Unified Multimodal Models (UMMs) built on shared autoregressive (AR) transformers are attractive for their architectural simplicity. However, we identify a critical limitation: when trained on multimodal inputs, modality-shared transformers suffer from severe gradient conflicts between vision and text, particularly in shallow and deep layers. We trace this issue to the fundamentally different low-level statistical properties of images and text, while noting that conflicts diminish in middle layers where representations become more abstract and semantically aligned. To overcome this challenge, we propose Uni-X, a two-end-separated, middle-shared architecture. Uni-X dedicates its initial and final layers to modality-specific processing, while maintaining shared parameters in the middle layers for high-level semantic fusion. This X-shaped design not only eliminates gradient conflicts at both ends but also further alleviates residual conflicts in the shared layers. Extensive experiments validate the effectiveness of Uni-X. Under identical training conditions, Uni-X achieves superior training efficiency compared to strong baselines. When scaled to 3B parameters with larger training data, Uni-X matches or surpasses 7B AR-based UMMs, achieving a GenEval score of 82 for image generation alongside strong performance in text and vision understanding tasks. These results establish Uni-X as a parameter-efficient and scalable foundation for future unified multimodal modeling. Our code is available at https://github.com/CURRENTF/Uni-X


翻译:基于共享自回归(AR)Transformer构建的统一多模态模型(UMMs)因其架构简洁性而备受关注。然而,我们发现一个关键局限:当在多种模态输入上进行训练时,模态共享的Transformer在浅层和深层尤其会遭受视觉与文本之间严重的梯度冲突。我们将此问题归因于图像与文本在低层统计特性上的根本差异,同时注意到在中间层,由于表征变得更加抽象且语义对齐,冲突会减弱。为克服这一挑战,我们提出Uni-X,一种两端分离、中间共享的架构。Uni-X将其初始层和最终层专用于模态特定处理,同时在中间层保持共享参数以实现高层语义融合。这种X形设计不仅消除了两端的梯度冲突,还进一步缓解了共享层中的残余冲突。大量实验验证了Uni-X的有效性。在相同训练条件下,Uni-X相比强基线实现了更优的训练效率。当扩展到30亿参数并使用更大训练数据时,Uni-X匹配甚至超越了基于70亿参数AR的UMMs,在图像生成任务中取得82的GenEval分数,同时在文本和视觉理解任务中表现出强劲性能。这些结果确立了Uni-X作为未来统一多模态建模的参数高效且可扩展的基础。我们的代码可在https://github.com/CURRENTF/Uni-X获取。

0
下载
关闭预览

相关内容

UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
相关基金
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员