This study investigates dynamic system-optimal (DSO) and dynamic user equilibrium (DUE) traffic assignment of departure/arrival-time choices in a corridor network. The morning commute problems with a many-to-one pattern of origin-destination demand and the evening commute problems with a one-to-many pattern are considered. In this study, a novel approach is developed to derive an analytical solution for the DSO problem. By utilizing the analytical solution, we prove that the queuing delay at a bottleneck in a DUE solution is equal to an optimal toll that eliminates the queue in a DSO solution under certain conditions of a schedule delay function. This enables us to derive a closed-form DUE solution by using the DSO solution. Numerical examples are provided to illustrate and verify analytical results.
翻译:这项研究调查了走廊网络中离开/抵达时间选择的动态系统最佳(DSO)和动态用户平衡(DUE)交通选择;审议了以多种至一种形式源源目的地需求的早间通勤问题和一至多种模式的晚间通勤问题;在这项研究中,开发了一种新颖的方法,为DSO问题找到分析解决办法;通过使用分析解决办法,我们证明,在DUE解决方案中瓶颈处的排挤延迟相当于在一定条件下消除DSO解决方案中的排队的最佳伤亡;这使我们能够利用DSO解决方案获得封闭式DUE解决方案;提供了数字实例,以说明和核实分析结果。