When analysing extreme values, two alternative statistical approaches have historically been held in contention: the seminal block maxima method (or annual maxima method, spurred by hydrological applications) and the peaks-over-threshold. Clamoured amongst statisticians as wasteful of potentially informative data, the block maxima method gradually fell into disfavour whilst peaks-over-threshold-based methodologies were ushered to the centre stage of extreme value statistics. This paper proposes a hybrid method which reconciles these two hitherto disconnected approaches. Appealing in its simplicity, our main result introduces a new universal limiting characterisation of extremes that eschews the customary requirement of a sufficiently large block size for the plausible block maxima-fit to an extreme value distribution. We advocate that inference should be drawn solely on larger block maxima, from which practice the mainstream peaks-over-threshold methodology coalesces. The asymptotic properties of the promised hybrid-Hill estimator herald more than its efficiency, but rather that a fully-fledged unified semi-parametric stream of statistics for extreme values is viable. A finite sample simulation study demonstrates that a reduced-bias off-shoot of the hybrid-Hill estimator fares exceptionally well against the incumbent maximum likelihood estimation that relies on a numerical fit to the entire sample of block maxima.


翻译:在分析极值问题时,历史上存在两种相互对立的统计方法:开创性的区块极大值法(亦称年极大值法,源于水文应用)以及超阈值峰值法。由于统计学者普遍认为区块极大值法浪费了潜在的有效数据信息,该方法逐渐失宠,而基于超阈值峰值的方法则被推向了极值统计学的中心舞台。本文提出了一种混合方法,将这两种迄今相互独立的研究路径统一起来。我们的主要成果引入了一种新的极值通用极限特征描述,其简洁性颇具吸引力,同时规避了传统方法中要求区块尺寸足够大以使区块极大值拟合极值分布的前提条件。我们主张仅基于较大的区块极大值进行统计推断,主流超阈值峰值方法论正是由此实践融合而生。所提出的混合Hill估计量的渐近性质不仅预示着其高效性,更表明一个完整的、统一的极值半参数统计体系是切实可行的。有限样本模拟研究表明,混合Hill估计量的降偏差衍生方法相较于当前依赖全样本区块极大值数值拟合的最大似然估计表现出显著优势。

0
下载
关闭预览

相关内容

【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
 DiffRec: 扩散推荐模型(SIGIR'23)
专知会员服务
48+阅读 · 2023年4月16日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【Nature】贝叶斯统计与建模综述,26页pdf
专知会员服务
77+阅读 · 2021年1月21日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
基于Lattice LSTM的命名实体识别
微信AI
48+阅读 · 2018年10月19日
深度学习目标检测概览
AI研习社
46+阅读 · 2017年10月13日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
 DiffRec: 扩散推荐模型(SIGIR'23)
专知会员服务
48+阅读 · 2023年4月16日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【Nature】贝叶斯统计与建模综述,26页pdf
专知会员服务
77+阅读 · 2021年1月21日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
基于Lattice LSTM的命名实体识别
微信AI
48+阅读 · 2018年10月19日
深度学习目标检测概览
AI研习社
46+阅读 · 2017年10月13日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员