How to manage the interference introduced by the enormous wireless devices is a crucial issue to address in the prospective sixth-generation (6G) communications. The treating interference as noise (TIN) optimality conditions are commonly used for interference management and thus attract significant interest in existing wireless systems. Cell-free massive multiple-input multiple-output (CF mMIMO) is a promising technology in 6G that exhibits high system throughput and excellent interference management by exploiting a large number of access points (APs) to serve the users collaboratively. In this paper, we take the first step on studying TIN in CF mMIMO systems from a stochastic geometry perspective by investigating the probability that the TIN conditions hold with spatially distributed network nodes. We propose a novel analytical framework for TIN in a CF mMIMO system with both Binomial Point Process (BPP) and Poisson Point Process (PPP) approximations. We derive the probability that the TIN conditions hold in close form using the PPP approximation. Numerical results validate our derived expressions and illustrate the impact of various system parameters on the probability that the TIN conditions hold.
翻译:如何管理巨大的无线装置带来的干扰是未来第六代(6G)通信中要解决的一个关键问题。将干扰作为噪声的最佳条件处理,通常用于干扰管理,从而吸引对现有无线系统的极大兴趣。无细胞的大规模多投入多重输出(CFMIMO)是6G中一项很有希望的技术,它通过利用大量接入点为用户提供协作服务,展示了高系统吞吐量和极好的干扰管理。在本文中,我们从随机分析的几何角度研究CFMMIMO系统中的TIN。我们通过调查TIN条件与空间分布式网络节点保持的概率,采取了第一步,我们提出了CFMIMO系统中的TIN新颖分析框架,该系统既有BPP进程(BPP),也有Poisson点进程(PPPP)近似值。我们推断了TIN条件以近似形式存在的概率。数字结果证实了我们的衍生表达方式,并说明了各种系统参数对TIN条件所存在的概率的影响。