Segmenting Synthetic Aperture Radar (SAR) images is crucial for many remote sensing applications, particularly water body detection. However, deep learning-based segmentation models often face challenges related to convergence speed and stability, mainly due to the complex statistical distribution of this type of data. In this study, we evaluate the impact of mode normalization on two widely used semantic segmentation models, U-Net and SegNet. Specifically, we integrate mode normalization, to reduce convergence time while maintaining the performance of the baseline models. Experimental results demonstrate that mode normalization significantly accelerates convergence. Furthermore, cross-validation results indicate that normalized models exhibit increased stability in different zones. These findings highlight the effectiveness of normalization in improving computational efficiency and generalization in SAR image segmentation.
翻译:合成孔径雷达(SAR)图像分割对许多遥感应用至关重要,尤其是水体检测。然而,基于深度学习的分割模型常面临收敛速度与稳定性方面的挑战,这主要源于此类数据复杂的统计分布特性。本研究评估了模态归一化对两种广泛使用的语义分割模型(U-Net和SegNet)的影响。具体而言,我们通过集成模态归一化来缩短收敛时间,同时保持基准模型的性能。实验结果表明,模态归一化能显著加速收敛过程。此外,交叉验证结果显示归一化模型在不同区域表现出更高的稳定性。这些发现凸显了归一化技术在提升SAR图像分割计算效率与泛化能力方面的有效性。