In 1979 Valiant introduced the complexity class VNP of p-definable families of polynomials, he defined the reduction notion known as p-projection and he proved that the permanent polynomial and the Hamiltonian cycle polynomial are VNP-complete under p-projections. In 2001 Mulmuley and Sohoni (and independently B\"urgisser) introduced the notion of border complexity to the study of the algebraic complexity of polynomials. In this algebraic machine model, instead of insisting on exact computation, approximations are allowed. This gives VNP the structure of a topological space. In this short note we study the set VNPC of VNP-complete polynomials. We show that the complement VNP \ VNPC lies dense in VNP. Quite surprisingly, we also prove that VNPC lies dense in VNP. We prove analogous statements for the complexity classes VF, VBP, and VP. The density of VNP \ VNPC holds for several different reduction notions: p-projections, border p-projections, c-reductions, and border c-reductions. We compare the relationship of the completeness notions under these reductions and separate most of the corresponding sets. Border reduction notions were introduced by Bringmann, Ikenmeyer, and Zuiddam (JACM 2018). Our paper is the first structured study of border reduction notions.


翻译:1979年,Valiant 引入了多元金属的可定义家庭复杂VNP级的复杂VNP, 他定义了称为P-预测的减少概念, 并证明永久性多元金属和汉密尔顿周期多元金属在预测下是完整的VNP。 2001年, Mulmuley和Sohoni(以及独立B\\"urgisser)在研究多金属的代数复杂性时引入了边界复杂性概念。在这个代数机器模型中,他没有坚持精确计算,而是允许近似。这给了VNP一个表层空间的结构。在这个简短的注释中,我们研究了VNPC和汉密尔顿周期的永久多元金属在预测下是完整的。我们展示了VNP & VNP & VNPC在VNP(以及独立B、VBB、VP和VP。 VP。 VNPC的密度也证明, VNP & VNPC在复杂的分类中, 有一些不同的减缩缩概念:P-proision、M

0
下载
关闭预览

相关内容

JACM:Journal of the ACM。 Explanation:ACM杂志。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/journals/jacm/
自然语言处理现代方法,176页pdf
专知会员服务
268+阅读 · 2021年2月22日
最新《图理论》笔记书,98页pdf
专知会员服务
75+阅读 · 2020年12月27日
专知会员服务
85+阅读 · 2020年12月5日
【干货书】机器学习Primer,122页pdf
专知会员服务
107+阅读 · 2020年10月5日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新《图理论》笔记书,98页pdf
专知
51+阅读 · 2020年12月27日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
机器学习的5种距离度量方法
七月在线实验室
9+阅读 · 2018年5月18日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2022年2月3日
Arxiv
0+阅读 · 2022年2月3日
Arxiv
0+阅读 · 2022年2月1日
VIP会员
相关VIP内容
自然语言处理现代方法,176页pdf
专知会员服务
268+阅读 · 2021年2月22日
最新《图理论》笔记书,98页pdf
专知会员服务
75+阅读 · 2020年12月27日
专知会员服务
85+阅读 · 2020年12月5日
【干货书】机器学习Primer,122页pdf
专知会员服务
107+阅读 · 2020年10月5日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
最新《图理论》笔记书,98页pdf
专知
51+阅读 · 2020年12月27日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
机器学习的5种距离度量方法
七月在线实验室
9+阅读 · 2018年5月18日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员