We study the price of anarchy of the first-price auction in the autobidding world, where bidders can be either utility maximizers (i.e., traditional bidders) or value maximizers (i.e., autobidders). We show that with autobidders only, the price of anarchy of the first-price auction is $1/2$, and with both kinds of bidders, the price of anarchy degrades to about $0.457$ (the precise number is given by an optimization). These results complement the recent result by Jin and Lu [2022] showing that the price of anarchy of the first-price auction with traditional bidders only is $1 - 1/e^2$. We further investigate a setting where the seller can utilize machine-learned advice to improve the efficiency of the auctions. There, we show that as the accuracy of the advice increases, the price of anarchy improves smoothly from about $0.457$ to $1$.
翻译:我们研究了自动投标世界第一次价格拍卖无政府状态的价格,在这种无政府状态下,投标人既可以是公用事业最大化者(即传统投标人),也可以是价值最大化者(即自动投标人)。 我们发现,仅依靠自动投标人,第一次价格拍卖无政府状态的价格是1/2美元,而这两种投标人的价格都是1/2美元,无政府状态的价格降低到约4.57美元(精确数字通过优化给出 ) 。 这些结果补充了金和卢最近的结果,显示与传统投标人进行的第一次价格拍卖无政府状态的价格只有1-1美元(e)2美元。 我们还进一步调查了卖方可以利用机器获得的建议来提高拍卖效率的环境。 在那里,我们表明,由于建议增加的准确性,无政府状态的价格从大约0.457美元顺利提高到1美元。