In this paper we propose a Long Short-Term Memory Network based method to forecast the energy consumption in public buildings, based on past measurements. Our approach consists of three main steps: data processing step, training and validation step, and finally the forecasting step. We tested our method on a data set consisting of measurements taken every half an hour from the main building of the National Archives of the United Kingdom, in Kew and as evaluation metrics we have used Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE).
翻译:在本文中,我们根据以往的测量结果,提出了一个以长期短期记忆网络为基础的方法来预测公共建筑的能源消耗。我们的方法包括三个主要步骤:数据处理步骤、培训和验证步骤以及最后的预测步骤。我们用一套数据集测试了我们的方法,这套数据集包括每半小时从联合王国国家档案馆主楼、在邱园进行的测量,以及我们使用的“绝对误差”和“绝对误差”的评价指标。