We aim at assessing the states of the nodes in a network by means of end-to-end monitoring paths. The contribution of this paper is twofold. First, we consider a static failure scenario. In this context, we aim at minimizing the number of probes to obtain failure identification. To face this problem, we propose a progressive approach to failure localization based on stochastic optimization, whose solution is the optimal sequence of monitoring paths to probe. We address the complexity of the problem by proposing a greedy strategy in two variants: one considers exact calculation of posterior probabilities of node failures, given the observation, whereas the other approximates these values by means of a novel failure centrality metric. Secondly, we adapt these two strategies to a dynamic failure scenario where nodes states can change throughout a monitoring period. By means of numerical experiments conducted on real network topologies, we demonstrate the practical applicability of our approach. Our performance evaluation evidences the superiority of our algorithms with respect to state of the art solutions based on classic Boolean Network Tomography as well as approaches based on sequential group testing.


翻译:我们的目标是通过端到端监测路径来评估网络中节点的状态。 本文的贡献是双重的。 首先, 我们考虑静态故障假设。 在这方面, 我们的目标是最大限度地减少探测次数, 以便发现故障。 面对这一问题, 我们提出基于随机优化的渐进方法来解决本地化失败问题, 其解决方案是最佳的监测路径的优化序列。 我们用两种变式提出贪婪的战略来解决问题的复杂性: 一种是考虑精确计算节点故障的事后概率, 一种是观察结果, 而其他的则以新颖的故障中心度衡量方法来接近这些值。 其次, 我们调整这两种战略, 使节点国家在整个监测期间能够改变的动态故障假设。 通过对真实网络结构进行数字实验, 我们展示了我们的方法的实际适用性。 我们的绩效评估证明, 我们的算法在基于经典的布林网络成像学以及基于顺序组测试的方法的艺术解决方案状态方面, 具有优势。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
8+阅读 · 2018年10月31日
Dynamic Zoom-in Network 论文笔记
统计学习与视觉计算组
6+阅读 · 2018年7月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Operator Compression with Deep Neural Networks
Arxiv
0+阅读 · 2021年5月25日
VIP会员
相关资讯
已删除
将门创投
8+阅读 · 2018年10月31日
Dynamic Zoom-in Network 论文笔记
统计学习与视觉计算组
6+阅读 · 2018年7月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员