Motivated by frequency assignment problems in wireless broadcast networks, Goddard, Hedetniemi, Hedetniemi, Harris, and Rall introduced the notion of $S$-packing coloring in 2008. Given a non-decreasing sequence $S = (s_1, s_2, \ldots, s_k)$ of positive integers, an $S$-packing coloring of a graph $G$ is a partition of its vertex set into $k$ subsets $\{V_1, V_2, \ldots, V_k\}$ such that for each $1 \leq i \leq k$, the distance between any two distinct vertices $u, v \in V_i$ is at least $s_i + 1$. In this paper, we study the $S$-packing coloring problem for Halin graphs with maximum degree $Δ\leq 5$. Specifically, we present a linear-time algorithm that constructs a $(1,1,2,2,2)$-packing coloring for any Halin graph satisfying $Δ\leq 5$. It is worth noting that there are Halin graphs that are not $(1,2,2,2)$-packing colorable.
翻译:受无线广播网络中频率分配问题的启发,Goddard、Hedetniemi、Hedetniemi、Harris和Rall于2008年提出了$S$-包装着色的概念。给定一个非递减的正整数序列$S = (s_1, s_2, \ldots, s_k)$,图$G$的一个$S$-包装着色是指将其顶点集划分成$k$个子集$\{V_1, V_2, \ldots, V_k\}$,使得对于每个$1 \leq i \leq k$,任意两个不同顶点$u, v \in V_i$之间的距离至少为$s_i + 1$。本文研究了最大度$Δ\leq 5$的Halin图的$S$-包装着色问题。具体而言,我们提出了一种线性时间算法,该算法可为任何满足$Δ\leq 5$的Halin图构造一个$(1,1,2,2,2)$-包装着色。值得注意的是,存在一些Halin图不是$(1,2,2,2)$-包装可着色的。