Enormous hope in the efficacy of vaccines became recently a successful reality in the fight against the COVID-19 pandemic. However, vaccine hesitancy, fueled by exposure to social media misinformation about COVID-19 vaccines became a major hurdle. Therefore, it is essential to automatically detect where misinformation about COVID-19 vaccines on social media is spread and what kind of misinformation is discussed, such that inoculation interventions can be delivered at the right time and in the right place, in addition to interventions designed to address vaccine hesitancy. This paper is addressing the first step in tackling hesitancy against COVID-19 vaccines, namely the automatic detection of misinformation about the vaccines on Twitter, the social media platform that has the highest volume of conversations about COVID-19 and its vaccines. We present CoVaxLies, a new dataset of tweets judged relevant to several misinformation targets about COVID-19 vaccines on which a novel method of detecting misinformation was developed. Our method organizes CoVaxLies in a Misinformation Knowledge Graph as it casts misinformation detection as a graph link prediction problem. The misinformation detection method detailed in this paper takes advantage of the link scoring functions provided by several knowledge embedding methods. The experimental results demonstrate the superiority of this method when compared with classification-based methods, widely used currently.


翻译:对疫苗功效的极大希望最近成为对抗COVID-19大流行的斗争中的成功现实;然而,由于接触社交媒体对COVID-19疫苗的错误信息而导致疫苗犹豫不决,成为了一大障碍;因此,必须自动发现社交媒体对COVID-19疫苗的错误信息在哪些地方传播,并讨论何种错误信息,因此除了在正确的地点采取旨在解决疫苗失灵问题的干预措施外,可以在正确的时间和正确的地点提供接种干预措施;本文件正在讨论解决对COVID-19疫苗的误诊问题的第一步,即自动发现在Twitter上有关疫苗的错误信息,即自动发现关于CVID-19及其疫苗的社交媒体平台上的错误信息。我们提供CovaxLies,这是一套新的推文,这些推文被认为与若干关于COVID-19疫苗的错误目标有关,并据此开发了一种新的发现误诊方法。我们的方法将错误信息知识图中的CoVaxLies作为预测问题的图表链接。本文中详细介绍的错误信息检测方法,在广泛使用这种方法进行高级链接时,展示了目前用来进行评级的方法。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
已删除
将门创投
5+阅读 · 2019年6月28日
Arxiv
0+阅读 · 2021年10月4日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年6月28日
Top
微信扫码咨询专知VIP会员