The acyclic chromatic number of a graph is the least number of colors needed to properly color its vertices so that none of its cycles has only two colors. The acyclic chromatic index is the analogous graph parameter for edge colorings. We first show that the acyclic chromatic index is at most $2\Delta-1$, where $\Delta$ is the maximum degree of the graph. We then show that for all $\epsilon >0$ and for $\Delta$ large enough (depending on $\epsilon$), the acyclic chromatic number of the graph is at most $\lceil(2^{-1/3} +\epsilon) {\Delta}^{4/3} \rceil +\Delta+ 1$. Both results improve long chains of previous successive advances. Both are algorithmic, in the sense that the colorings are generated by randomized algorithms. However, in contrast with extant approaches, where the randomized algorithms assume the availability of enough colors to guarantee properness deterministically, and use additional colors for randomization in dealing with the bichromatic cycles, our algorithms may initially generate colorings that are not necessarily proper; they only aim at avoiding cycles where all pairs of edges, or vertices, that are one edge, or vertex, apart in a traversal of the cycle are homochromatic (of the same color). When this goal is reached, they check for properness and if necessary they repeat until properness is attained.


翻译:图形的周期性色素数是正确显示其脊椎颜色所需的颜色最少的颜色数, 使其周期中没有一个周期只有两种颜色。 周期性色谱指数是边缘颜色的类似图形参数。 我们首先显示, 周期性色谱指数最多为 2\ Delta-1 $\ Delta-1 $\ Delta$ 是图表的最大程度。 我们然后显示, 所有 $\ epsilon > 0$ 和 $\ Delta$ 都足够大( 取决于$\ epsilon$ ) 。 图表的周期性色谱数最多为 $\ lceil ( 2\\ -1 /3} ⁇ ⁇ { eepsilon) 。 我们的周期性色谱值最多为$2\ Delta4/ 3}\ \ rcelle + 1 $。 两者的结果都会改善前一连串进步的长链 。 从此意义上说, 颜色是由随机的算算算算算的。 然而, 与 相对而言,,, 当它们到达时, 随机性算算算算算算算算算算算算算算算算算算算算算算算它们只有足够的周期内足够的颜色,, 当它们会达到足够的颜色的颜色可以保证正确周期性周期性, 。 。 当它们为正常的周期内, 。 。 。 当它们会算算算算算算算算算算算算算算算算算算算算算算算算算算算算算一个正常的周期内, 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月5日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员