Automated program repair is an emerging technology that seeks to automatically rectify bugs and vulnerabilities using learning, search, and semantic analysis. Trust in automatically generated patches is necessary for achieving greater adoption of program repair. Towards this goal, we survey more than 100 software practitioners to understand the artifacts and setups needed to enhance trust in automatically generated patches. Based on the feedback from the survey on developer preferences, we quantitatively evaluate existing test-suite based program repair tools. We find that they cannot produce high-quality patches within a top-10 ranking and an acceptable time period of 1 hour. The developer feedback from our qualitative study and the observations from our quantitative examination of existing repair tools point to actionable insights to drive program repair research. Specifically, we note that producing repairs within an acceptable time-bound is very much dependent on leveraging an abstract search space representation of a rich enough search space. Moreover, while additional developer inputs are valuable for generating or ranking patches, developers do not seem to be interested in a significant human-in-the-loop interaction.


翻译:自动程序修理是一种新兴技术,它寻求利用学习、搜索和语义分析自动纠正错误和弱点。信任自动生成的补丁对于实现更多采用程序修理是必要的。为了实现这一目标,我们调查了100多名软件从业人员,以了解对自动生成的补丁的信任程度。根据开发者偏好调查的反馈,我们量化地评估了现有基于测试的适合程序修理工具。我们发现,它们无法在10级最高排名和1小时可接受的时间内产生高质量的补丁。我们定性研究的开发者反馈以及现有修理工具定量检查的观察表明,在可操作的洞察中发现,推动方案修理研究。具体地说,我们指出,在可接受的时限内进行修理在很大程度上取决于利用一个具有丰富搜索空间的抽象搜索空间。此外,虽然额外的开发者投入对于产生或排列补丁很有价值,但开发者似乎对重大的人类在现场的互动并不感兴趣。

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年2月5日
Arxiv
0+阅读 · 2022年2月4日
Arxiv
5+阅读 · 2020年10月14日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Arxiv
6+阅读 · 2018年11月29日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员