Learning dynamic user preference has become an increasingly important component for many online platforms (e.g., video-sharing sites, e-commerce systems) to make sequential recommendations. Previous works have made many efforts to model item-item transitions over user interaction sequences, based on various architectures, e.g., recurrent neural networks and self-attention mechanism. Recently emerged graph neural networks also serve as useful backbone models to capture item dependencies in sequential recommendation scenarios. Despite their effectiveness, existing methods have far focused on item sequence representation with singular type of interactions, and thus are limited to capture dynamic heterogeneous relational structures between users and items (e.g., page view, add-to-favorite, purchase). To tackle this challenge, we design a Multi-Behavior Hypergraph-enhanced Transformer framework (MBHT) to capture both short-term and long-term cross-type behavior dependencies. Specifically, a multi-scale Transformer is equipped with low-rank self-attention to jointly encode behavior-aware sequential patterns from fine-grained and coarse-grained levels. Additionally, we incorporate the global multi-behavior dependency into the hypergraph neural architecture to capture the hierarchical long-range item correlations in a customized manner. Experimental results demonstrate the superiority of our MBHT over various state-of-the-art recommendation solutions across different settings. Further ablation studies validate the effectiveness of our model design and benefits of the new MBHT framework. Our implementation code is released at: https://github.com/yuh-yang/MBHT-KDD22.
翻译:对许多在线平台(例如,视频共享网站、电子商务系统)来说,学习动态用户偏好已成为一个日益重要的组成部分,以提出相继建议。以前的工作已作出许多努力,在各种架构的基础上,例如经常性神经网络和自我关注机制,模拟项目项目向用户互动序列的过渡。最近出现的图形神经网络也成为有用的主干模型,以捕捉相继建议情景中的项目依赖性。尽管其有效性,但现有方法一直侧重于具有独特互动类型的项目序列代表,因此仅限于捕捉用户和项目(例如,页面视图,添加到爱、购买)之间的动态不同关系结构。为了应对这一挑战,我们设计了一个多图像超强变异器框架(MBHT)以捕捉短期和长期跨类型行为依赖性。具体地说,一个多规模变异模型配备了低级的自我意识,以联合编码从精细度和直线性关系结构(例如,页视图,添加到爱爱-爱、购买)之间的关系结构。为了应对这一挑战,我们设计了一个多层次超级超级变异的变异框架(MB)的模型框架,我们将一个跨高等级的模型(MB)的模型的模型的模型的模型的模型化模型化模型的模型的模型的模型, 将一个跨了我们系统化模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型。我们将一个跨级模型的模型的模型的模型的模型的模型的模型的模型的模型, 的模型的模型的模型。