In this paper, we investigate fast algorithms to approximate the Caputo derivative $^C_0D_t^\alpha u(t)$ when $\alpha$ is small. We focus on two fast algorithms, i.e. FIR and FIDR, both relying on the sum-of-exponential approximation to reduce the cost of evaluating the history part. FIR is the numerical scheme originally proposed in [16], and FIDR is an alternative scheme we propose in this work, and the latter shows superiority when $\alpha$ is small. With quantitative estimates, we prove that given a certain error threshold, the computational cost of evaluating the history part of the Caputo derivative can be decreased as $\alpha$ gets small. Hence, only minimal cost for the fast evaluation is required in the small $\alpha$ regime, which matches prevailing protocols in engineering practice. We also present a stability and error analysis of FIDR for solving linear fractional diffusion equations. Finally, we carry out systematic numerical studies for the performances of both FIR and FIDR schemes, where we explore the trade-off between accuracy and efficiency when $\alpha$ is small.
翻译:在本文中,我们调查快速算法,以在美元数额小时接近卡普托衍生物$C_0D_t ⁇ alpha u(t)美元。我们侧重于两个快速算法,即FIR和FIDR,两者都依赖耗资近似总和来降低历史部分的评估成本。FIR是最初在[16]中提议的数字方案,FIDR是我们在这项工作中提议的一个替代方案,后者在美元数额小时显示出优势。根据定量估计,我们证明如果存在某种差错阈值,评价卡普托衍生物历史部分的计算成本可以随着美元数额小而降低。因此,小型alpha$制度只需要最低限度的快速评估成本,这符合工程实践中通行的规程。我们还对FIDR进行稳定性和错误分析,以解决线性分数扩散方程。最后,我们对FIR和FIR两种方案的业绩进行系统的数字研究,我们在这里探索美元数额小时的准确度和效率之间的交易。