Fine-tuning large pre-trained language models on downstream tasks has become the de-facto learning paradigm in NLP. However, conventional approaches fine-tune all the parameters of the pre-trained model, which becomes prohibitive as the model size and the number of tasks grow. Recent work has proposed a variety of parameter-efficient transfer learning methods that only fine-tune a small number of (extra) parameters to attain strong performance. While effective, the critical ingredients for success and the connections among the various methods are poorly understood. In this paper, we break down the design of state-of-the-art parameter-efficient transfer learning methods and present a unified framework that establishes connections between them. Specifically, we re-frame them as modifications to specific hidden states in pre-trained models, and define a set of design dimensions along which different methods vary, such as the function to compute the modification and the position to apply the modification. Through comprehensive empirical studies across machine translation, text summarization, language understanding, and text classification benchmarks, we utilize the unified view to identify important design choices in previous methods. Furthermore, our unified framework enables the transfer of design elements across different approaches, and as a result we are able to instantiate new parameter-efficient fine-tuning methods that tune less parameters than previous methods while being more effective, achieving comparable results to fine-tuning all parameters on all four tasks.


翻译:在下游任务方面,对经过培训的大型语言模型进行微调,这已成为国家劳工局的脱法学习范式。然而,传统方法微调了经过培训的模式的所有参数,随着模型规模和任务数量的增加,这些参数变得令人望而却步。最近的工作提出了各种具有参数效率的转让学习方法,这些方法只能微调少量(外)参数,以取得强有力的业绩。虽然有效,但成功的关键因素和各种方法之间的联系却不易理解。在本文件中,我们打破了设计最先进的具有参数效率的转让学习方法,并提出了一个能建立它们之间联系的统一框架。具体地说,我们把这些方法作为修改在经过培训的模式中具体隐蔽状态的修改而加以调整,并界定了一套不同的设计层面,这些设计方法各不相同,例如对修改进行精细调整的功能和运用修改的位置等。我们通过对机器翻译、文本简略、语言理解和文本分类基准的综合经验研究,利用统一的观点来确定以前方法中的重要设计选择。此外,我们的统一框架使得设计要素的转让成为了在经过预先训练的模型中,同时调整的所有参数都是比现在更精确的参数,我们能够实现更精确的。

0
下载
关闭预览

相关内容

迁移学习(Transfer Learning)是一种机器学习方法,是把一个领域(即源领域)的知识,迁移到另外一个领域(即目标领域),使得目标领域能够取得更好的学习效果。迁移学习(TL)是机器学习(ML)中的一个研究问题,着重于存储在解决一个问题时获得的知识并将其应用于另一个但相关的问题。例如,在学习识别汽车时获得的知识可以在尝试识别卡车时应用。尽管这两个领域之间的正式联系是有限的,但这一领域的研究与心理学文献关于学习转移的悠久历史有关。从实践的角度来看,为学习新任务而重用或转移先前学习的任务中的信息可能会显着提高强化学习代理的样本效率。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
21+阅读 · 2021年4月11日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
13+阅读 · 2021年7月20日
A Comprehensive Survey on Transfer Learning
Arxiv
120+阅读 · 2019年11月7日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
5+阅读 · 2018年9月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员