The nondecimated or translation-invariant wavelet transform (NDWT) is a central tool in classical multiscale signal analysis, valued for its stability, redundancy, and shift invariance. This paper develops two complementary quantum formulations of the NDWT that embed these classical properties coherently into quantum computation. The first formulation is based on the epsilon-decimated interpretation of the NDWT and realizes all circularly shifted wavelet transforms simultaneously by promoting the shift index to a quantum register and applying controlled circular shifts followed by a wavelet analysis unitary. The resulting construction yields an explicit, fully unitary quantum representation of redundant wavelet coefficients and supports coherent postprocessing, including quantum shrinkage via ancilla-driven completely positive trace preserving maps. The second formulation is based on the Hadamard test and uses diagonal phase operators to probe scale-shift wavelet structure through interference, providing direct access to shift-invariant energy scalograms and multiscale spectra without explicit coefficient reconstruction. Together, these two approaches demonstrate that redundancy and translation invariance can be exploited rather than avoided in the quantum setting. Applications to denoising, feature extraction, and spectral scaling illustrate how quantum NDWTs provide a flexible and physically meaningful foundation for multiscale quantum signal processing.
翻译:非抽取或平移不变小波变换(NDWT)是经典多尺度信号分析的核心工具,因其稳定性、冗余性和平移不变性而备受重视。本文提出了两种互补的量子化 NDWT 形式,将这些经典特性一致地嵌入量子计算中。第一种形式基于 NDWT 的 epsilon-抽取解释,通过将平移索引提升为量子寄存器,并应用受控循环平移及后续的小波分析酉变换,同时实现所有循环平移的小波变换。该构造给出了冗余小波系数的显式、完全酉的量子表示,并支持相干后处理,包括通过辅助比特驱动的完全正定保迹映射进行量子收缩。第二种形式基于 Hadamard 测试,利用对角相位算子通过干涉探测尺度-平移小波结构,无需显式系数重构即可直接获取平移不变的能量尺度谱和多尺度谱。这两种方法共同表明,在量子场景中,冗余性和平移不变性可以被利用而非回避。在去噪、特征提取和谱尺度分析中的应用表明,量子 NDWT 为多尺度量子信号处理提供了灵活且具有物理意义的基础。