Model-based approaches to imaging, like specialized image enhancements in astronomy, facilitate explanations of relationships between observed inputs and computed outputs. These models may be expressed with extended matrix-vector (EMV) algebra, especially when they involve only scalars, vectors, and matrices, and with n-mode or index notations, when they involve multidimensional arrays, also called numeric tensors or, simply, tensors. While this paper features an example, inspired by exoplanet imaging, that employs tensors to reveal (inverse) 2D fast Fourier transforms in an image enhancement model, the work is actually about the tensor algebra and software, or tensor frameworks, available for model-based imaging. The paper proposes a Ricci-notation tensor (RT) framework, comprising a dual-variant index notation, with Einstein summation convention, and codesigned object-oriented software, called the RTToolbox for MATLAB. Extensions to Ricci notation offer novel representations for entrywise, pagewise, and broadcasting operations popular in EMV frameworks for imaging. Complementing the EMV algebra computable with MATLAB, the RTToolbox demonstrates programmatic and computational efficiency via careful design of numeric tensor and dual-variant index classes. Compared to its closest competitor, also a numeric tensor framework that uses index notation, the RT framework enables superior ways to model imaging problems and, thereby, to develop solutions.
翻译:基于模型的成像方法,例如天文学中的专用图像增强技术,有助于解释观测输入与计算输出之间的关系。这些模型可采用扩展矩阵向量代数进行表达(尤其当仅涉及标量、向量和矩阵时),或采用n模/索引符号进行表达(当涉及多维数组——亦称为数值张量或简称为张量时)。虽然本文展示了一个受系外行星成像启发的示例,该示例在图像增强模型中运用张量揭示(逆)二维快速傅里叶变换,但本研究的核心实质在于探讨适用于基于模型成像的张量代数与软件(即张量框架)。本文提出一种里奇符号张量框架,该框架包含采用爱因斯坦求和约定的双变体索引符号,以及协同设计的面向对象软件(即用于MATLAB的RTToolbox)。通过对里奇符号的扩展,该框架为成像领域EMV框架中常用的逐元素、逐页及广播运算提供了新颖的表示方法。作为对MATLAB可计算EMV代数的补充,RTToolbox通过精心设计的数值张量与双变体索引类,展现出卓越的编程与计算效率。相较于最接近的竞争框架(同为采用索引符号的数值张量框架),本RT框架为成像问题建模及相应解决方案的开发提供了更优的实现途径。