By amalgamating recent communication and control technologies, computing and data analytics techniques, and modular manufacturing, Industry~4.0 promotes integrating cyber-physical worlds through cyber-physical systems (CPS) and digital twin (DT) for monitoring, optimization, and prognostics of industrial processes. A DT is an emerging but conceptually different construct than CPS. Like CPS, DT relies on communication to create a highly-consistent, synchronized digital mirror image of the objects or physical processes. DT, in addition, uses built-in models on this precise image to simulate, analyze, predict, and optimize their real-time operation using feedback. DT is rapidly diffusing in the industries with recent advances in the industrial Internet of things (IIoT), edge and cloud computing, machine learning, artificial intelligence, and advanced data analytics. However, the existing literature lacks in identifying and discussing the role and requirements of these technologies in DT-enabled industries from the communication and computing perspective. In this article, we first present the functional aspects, appeal, and innovative use of DT in smart industries. Then, we elaborate on this perspective by systematically reviewing and reflecting on recent research in next-generation (NextG) wireless technologies (e.g., 5G and beyond networks), various tools (e.g., age of information, federated learning, data analytics), and other promising trends in networked computing (e.g., edge and cloud computing). Moreover, we discuss the DT deployment strategies at different industrial communication layers to meet the monitoring and control requirements of industrial applications. We also outline several key reflections and future research challenges and directions to facilitate industrial DT's adoption.


翻译:通过合并最近的通信和控制技术、计算和数据分析技术以及模块制造,工业~4.4通过监测、优化和预测工业流程的网络物理系统(CPS)和数字双对(DT),促进将网络物理世界一体化,以监测、优化和预测工业流程。DT是一个新兴的但概念上与CPS不同的结构。与CPS一样,DT依赖通信来创造高度一致的、同步的物体或物理流程的数字镜图像。此外,DT还利用这一精确图像的内在边际模型,利用反馈模拟、分析、预测和优化其实时运行。DT在工业应用中迅速扩散,工业互联网(IIOT)、边缘和云计算、机器学习、人工智能智能智能和高级数据分析的最新进步。然而,现有的文献缺乏从通信和计算机化角度确定和讨论这些技术在DT驱动的产业中的作用和要求。在本篇文章中,我们首先介绍了智能产业应用的功能、吸引力和创新性应用。然后,我们在工业应用中迅速传播工业应用,通过系统审查和反映最新G数据工具。

0
下载
关闭预览

相关内容

Explanation:无线网。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/journals/winet/
专知会员服务
39+阅读 · 2021年9月7日
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
122+阅读 · 2020年3月30日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
45+阅读 · 2019年12月20日
AutoML: A Survey of the State-of-the-Art
Arxiv
71+阅读 · 2019年8月14日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2021年9月7日
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
122+阅读 · 2020年3月30日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
45+阅读 · 2019年12月20日
AutoML: A Survey of the State-of-the-Art
Arxiv
71+阅读 · 2019年8月14日
Arxiv
12+阅读 · 2018年9月5日
Top
微信扫码咨询专知VIP会员