Modern intelligent urban mobility applications are underpinned by large-scale, multivariate, spatiotemporal data streams. Working with this data presents unique challenges of data management, processing and presentation that is often overlooked by researchers. Therefore, in this work we present an integrated data management and processing framework for intelligent urban mobility systems currently in use by our partner transit agencies. We discuss the available data sources and outline our cloud-centric data management and stream processing architecture built upon open-source publish-subscribe and NoSQL data stores. We then describe our data-integrity monitoring methods. We then present a set of visualization dashboards designed for our transit agency partners. Lastly, we discuss how these tools are currently being used for AI-driven urban mobility applications that use these tools.
翻译:现代智能城市流动应用以大规模、多变、时空数据流为基础。利用这些数据,在数据管理、处理和列报方面提出了研究人员经常忽视的独特挑战。因此,在这项工作中,我们为伙伴过境机构目前使用的智能城市流动系统提出了一个综合数据管理和处理框架。我们讨论了现有数据源,并概述了以开放源代码出版订阅和NOSQL数据储存为基础的云中心数据管理和流处理结构。然后我们描述了我们的数据完整性监测方法。然后我们提出了一套为过境机构伙伴设计的可视化仪表板。最后,我们讨论了这些工具目前如何用于使用这些工具的AI驱动的城市流动应用。