We solve, in the typical-case sense, the multi-sender linearly-decomposable distributed computing problem introduced by tessellated distributed computing. We model real-valued encoders/decoders and demand matrices, and assess structural fidelity via a thresholded graph edit distance between the demand support and the two-hop support of the computed product. Our analysis yields: a closed-form second-moment (Frobenius) risk under spike-and-slab ensembles; deterministic links between thresholded GED and norm error; a Gaussian surrogate with sub-exponential tails that exposes explicit recall lines; concentration of GED and operator-norm control; and a compute-capped design with a visible knee. We map the rules to aeronautical and satellite networks.
翻译:我们以典型情形的方式解决了由棋盘格分布式计算提出的多发送方线性可分解分布式计算问题。我们建模了实数值编码器/解码器和需求矩阵,并通过需求支撑集与计算乘积的二跳支撑集之间的阈值化图编辑距离来评估结构保真度。我们的分析得出:在尖峰-平板系综下的闭式二阶矩(弗罗贝尼乌斯)风险;阈值化图编辑距离与范数误差之间的确定性联系;一个具有亚指数尾部并揭示显式召回线的高斯代理;图编辑距离的集中性与算子范数控制;以及一个具有可见拐点的计算上限设计。我们将这些规则映射到航空与卫星网络中。