In e-commerce service recommendation, utilizing auxiliary behaviors to alleviate data sparsity often relies on the flawed assumption that auxiliary behaviors that fail to trigger target actions are negative samples. This approach is fundamentally flawed as it ignores false negatives where users actually harbor latent intent or interest but have not yet converted due to external factors. Consequently, existing methods suffer from sample selection bias and a severe distribution shift between the auxiliary and target behaviors, leading to the erroneous suppression of potential user needs. To address these challenges, we propose a Noise-to-Value Adapter (NoVa), an e-commerce service recommendation framework that re-examines the problem through the lens of positive-unlabeled learning. Instead of treating ambiguous auxiliary behaviors as definite negatives, NoVa aims to uncover high-quality preferences from noise via two key mechanisms. First, to bridge the distribution gap, we employ adversarial feature alignment. This module aligns the auxiliary behavior distribution with the target space to identify high-confidence false negatives, which are instances that statistically resemble confirmed target behaviors and thus represent latent conversion intents. Second, to mitigate label noise caused by accidental clicks or random browsing, we introduce a semantic consistency constraint. This mechanism implements semantic-aware filtering based on the content similarity of services, acting as a bias correction step to filter out low-confidence interactions that lack semantic relevance to historical user preferences. Extensive experiments on three real-world datasets demonstrate that NoVa outperforms state-of-the-art baselines.
翻译:在电子商务服务推荐中,利用辅助行为缓解数据稀疏性通常依赖于一个有缺陷的假设:未能触发目标行为的辅助行为即为负样本。这种方法存在根本性缺陷,因为它忽略了假阴性样本——即用户实际存在潜在意图或兴趣,但因外部因素尚未完成转化。因此,现有方法存在样本选择偏差以及辅助行为与目标行为间严重的分布偏移问题,导致对潜在用户需求的错误抑制。为应对这些挑战,我们提出噪声价值适配器(NoVa),这是一个基于正未标记学习视角重构问题的电子商务服务推荐框架。NoVa不将模糊的辅助行为视为确定负样本,而是通过两个关键机制从噪声中挖掘高质量偏好:首先,为弥合分布差距,我们采用对抗性特征对齐模块,将辅助行为分布与目标空间对齐,以识别高置信度假阴性样本——即统计特征与已确认目标行为相似、代表潜在转化意图的实例;其次,为减轻由误点击或随机浏览产生的标签噪声,我们引入语义一致性约束机制,基于服务内容相似度实施语义感知过滤,作为偏差校正步骤以筛除与历史用户偏好缺乏语义关联的低置信度交互。在三个真实数据集上的大量实验表明,NoVa性能优于当前最先进的基线模型。