As Metaverse emerges as the next-generation Internet paradigm, the ability to efficiently generate content is paramount. AI-Generated Content (AIGC) offers a promising solution to this challenge. However, the training and deployment of large AI models necessitate significant resources. To address this issue, we introduce an AIGC-as-a-Service (AaaS) architecture, which deploys AIGC models in wireless edge networks, ensuring ubiquitous access to AIGC services for Metaverse users. Nonetheless, a key aspect of providing personalized user experiences requires the careful selection of AIGC service providers (ASPs) capable of effectively executing user tasks. This selection process is complicated by environmental uncertainty and variability, a challenge not yet addressed well in existing literature. Therefore, we first propose a diffusion model-based AI-generated optimal decision (AGOD) algorithm, which can generate the optimal ASP selection decisions. We then apply AGOD to deep reinforcement learning (DRL), resulting in the Deep Diffusion Soft Actor-Critic (D2SAC) algorithm, which achieves efficient and effective ASP selection. Our comprehensive experiments demonstrate that D2SAC outperforms seven leading DRL algorithms. Furthermore, the proposed AGOD algorithm has the potential for extension to various optimization problems in wireless networks, positioning it a promising approach for the future research on AIGC-driven services in Metaverse. The implementation of our proposed method is available at: https://github.com/Lizonghang/AGOD.


翻译:随着元宇宙出现作为下一代互联网范式,高效生成内容的能力至关重要。生成式AI内容服务(AIGC)提供了解决这个挑战的有前途的解决方案。然而,大型AI模型的训练和部署需要大量的资源。为了解决这个问题,我们引入了一个AIGC作为服务(AaaS)体系结构,将AIGC模型部署在无线边缘网络中,确保元宇宙用户可以普遍获得AIGC服务。尽管如此,提供个性化用户体验的关键因素需要精心选择有效执行用户任务的AIGC服务提供商(ASP)。这个选择过程被环境的不确定性和变异性所复杂,这是现有文献中尚未很好解决的挑战。因此,我们首先提出了一个扩散模型的AI生成最优决策算法(AGOD),它可以生成最佳的ASP选择决策。然后我们将AGOD应用于深度强化学习(DRL),得到了Deep Diffusion Soft Actor-Critic(D2SAC)算法,实现了高效有效的ASP选择。我们全面的实验表明,D2SAC优于七种领先的DRL算法。此外,所提出的AGOD算法具有扩展到无线网络中各种优化问题的潜力,使其成为AIGC驱动的元宇宙服务未来研究的有前途的方法。我们提出方法的实现可以在以下网址找到:https://github.com/Lizonghang/AGOD。

1
下载
关闭预览

相关内容

人工智能生成内容
【干货书】生成式对抗学习:架构与应用,362页pdf
专知会员服务
171+阅读 · 2023年1月23日
专知会员服务
48+阅读 · 2021年6月12日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
24+阅读 · 2019年12月15日
“生成式技术”正在颠覆人类创作!
CSDN
2+阅读 · 2022年11月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月16日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关VIP内容
【干货书】生成式对抗学习:架构与应用,362页pdf
专知会员服务
171+阅读 · 2023年1月23日
专知会员服务
48+阅读 · 2021年6月12日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
24+阅读 · 2019年12月15日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员