In this paper, we proposed a conceptual model to predict the chat experience in a natural language generation dialog system. We evaluated the model with 120 participants with Partial Least Squares Structural Equation Modeling (PLS-SEM) and obtained an R-square (R2) with 0.541. The model considers various factors, including the prompts used for generation; coherence, sentiment, and similarity in the conversation; and users' perceived dialog agents' favorability. We then further explore the effectiveness of the subset of our proposed model. The results showed that users' favorability and coherence, sentiment, and similarity in the dialogue are positive predictors of users' chat experience. Moreover, we found users may prefer dialog agents with characteristics of Extroversion, Openness, Conscientiousness, Agreeableness, and Non-Neuroticism. Through our research, an adaptive dialog system might use collected data to infer factors in our model, predict the chat experience for users through these factors, and optimize it by adjusting prompts.
翻译:在本文中,我们提出了一个概念模型来预测自然语言生成对话系统中的聊天体验。我们使用偏最小二乘结构方程建模法(PLS-SEM)对该模型进行了评估,并获得了R平方值为0.541的结果。该模型考虑了多个因素,包括用于生成的提示;对话中的连贯性、情感以及相似度;以及用户对对话代理的好感度。然后,我们进一步探讨了我们提出的模型子集的有效性。结果表明,用户的好感度和对话中的连贯性、情感和相似度是用户聊天体验的积极预测因素。此外,我们发现用户可能更喜欢具有外向、开放、责任心、宜人和非神经质特征的对话代理。通过我们的研究,自适应对话系统可以使用收集到的数据推断我们模型中的因素,通过这些因素来预测用户的聊天体验,并通过调整提示来进行优化。