We prove that for any $\varepsilon>0$, for any large enough $t$, there is a graph $G$ that admits no $K_t$-minor but admits a $(\frac32-\varepsilon)t$-colouring that is "frozen" with respect to Kempe changes, i.e. any two colour classes induce a connected component. This disproves three conjectures of Las Vergnas and Meyniel from 1981.
翻译:我们证明,对于任何$varepsilon>0美元,对于任何足够大的美元,有一个G$G$的图表,它承认没有K$t$-minor,但承认了在Kempe变化方面“冻结”的$(frac32-\varepsilon)t-彩色,即任何两个彩色等级都诱发一个相关部分。从1981年开始,Las Vernas和Meyniel的三个猜想就被否定了。