As more and more autonomous vehicles (AVs) are being deployed on public roads, designing socially compatible behaviors for them is becoming increasingly important. In order to generate safe and efficient actions, AVs need to not only predict the future behaviors of other traffic participants, but also be aware of the uncertainties associated with such behavior prediction. In this paper, we propose an uncertain-aware integrated prediction and planning (UAPP) framework. It allows the AVs to infer the characteristics of other road users online and generate behaviors optimizing not only their own rewards, but also their courtesy to others, and their confidence regarding the prediction uncertainties. We first propose the definitions for courtesy and confidence. Based on that, their influences on the behaviors of AVs in interactive driving scenarios are explored. Moreover, we evaluate the proposed algorithm on naturalistic human driving data by comparing the generated behavior against ground truth. Results show that the online inference can significantly improve the human-likeness of the generated behaviors. Furthermore, we find that human drivers show great courtesy to others, even for those without right-of-way. We also find that such driving preferences vary significantly in different cultures.


翻译:随着越来越多的自主车辆(AVs)被部署在公共道路上,设计与社会兼容的行为变得日益重要。为了产生安全和高效的行动,AVs不仅需要预测其他交通参与者的未来行为,还需要意识到与这种行为预测相关的不确定性。在本文中,我们建议采用一种不确定的综合预测和规划框架(UAPP),允许AVs推断其他道路使用者在网上的特征,并产生行为,不仅优化他们自己的回报,而且优化他们对他人的礼遇,以及他们对预测不确定性的信心。我们首先提出礼貌和信心的定义。基于这一点,我们探索了他们对AVs在互动驾驶情景中行为的影响。此外,我们通过比较所产生的行为与地面真相比较,评估了自然人类驾驶数据的拟议算法。结果显示,在线推理可以大大改善所产生行为的人性。此外,我们发现人类驾驶者对他人表现出极大的礼遇,即使没有路权的人也是如此。我们发现,这种驱动偏好在不同的文化中也有很大差异。

0
下载
关闭预览

相关内容

Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
74+阅读 · 2020年5月5日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员