Modern software systems and products increasingly rely on machine learning models to make data-driven decisions based on interactions with users and systems, e.g., compute infrastructure. For broader adoption, this practice must (i) accommodate software engineers without ML backgrounds, and (ii) provide mechanisms to optimize for product goals. In this work, we describe general principles and a specific end-to-end ML platform, Looper, which offers easy-to-use APIs for decision-making and feedback collection. Looper supports the full end-to-end ML lifecycle from online data collection to model training, deployment, inference, and extends support to evaluation and tuning against product goals. We outline the platform architecture and overall impact of production deployment -- Looper currently hosts 700 ML models and makes 6 million decisions per second. We also describe the learning curve and summarize experiences of platform adopters.


翻译:现代软件系统和产品日益依赖机器学习模式,以便根据与用户和系统的互动,例如计算基础设施,作出以数据为驱动的决策。为了更广泛地采用这种做法,这种做法必须(一) 容纳没有ML背景的软件工程师,和(二) 提供优化产品目标的机制。在这项工作中,我们描述了一般原则和具体的端到端ML平台Looper,它为决策和反馈收集提供了容易使用的API。Looper支持从在线数据收集到模型培训、部署、推断的全端到端 ML生命周期,并为根据产品目标进行评估和调整提供支持。我们概述了平台结构和产品部署的总体影响 -- -- Looper目前容纳700 ML模型,每秒做出600万项决定。我们还描述了学习曲线,并总结了平台采用者的经验。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月12日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
System Safety and Artificial Intelligence
Arxiv
0+阅读 · 2022年2月18日
Arxiv
6+阅读 · 2019年4月4日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月12日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员