This paper investigates unmanned aerial vehicle (UAV) data collection systems with different multiple access schemes, where a rotary-wing UAV is dispatched to collect data from multiple ground nodes (GNs). Our goal is to maximize the minimum UAV data collection throughput from GNs for both orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) transmission, subject to the energy budgets at both the UAV and GNs, namely \emph{double energy limitations}. 1) For OMA, we propose an efficient algorithm by invoking alternating optimization (AO) method, where each subproblem is alternately solved by applying successive convex approximation (SCA) technique. 2) For NOMA, we first handle subproblems with fixed decoding order using SCA technique. Then, we develop a penalty-based algorithm to solve the decoding order design subproblem. Numerical results show that: i) The proposed algorithms are capable of improving the max-min throughput performance compared with other benchmark schemes; and ii) NOMA yields a higher performance gain than OMA when GNs have sufficient energy.
翻译:本文调查了具有多种存取办法的无人驾驶飞行器数据收集系统(无人驾驶飞行器),其中派出旋转翼无人驾驶飞行器从多个地面节点收集数据。我们的目标是最大限度地从全球导航卫星系统中收集最低的无人驾驶飞行器数据收集量,用于正向多重存取(OMA)和非正向多重存取(NOMA)传输,但取决于无人驾驶飞行器和全球导航卫星系统的能源预算,即\emph{双向能源限制}。 1 对于奥马,我们建议采用一种高效的算法,采用交替优化(AO)方法,使每个子问题通过采用连续的convex近似(SCA)技术而交替解决。 2 对于诺马,我们首先使用固定解码程序处理子问题。 然后,我们开发一种基于惩罚的算法,以解决解码命令设计子问题。 数值结果显示:i)提议的算法能够与其他基准计划相比,改进最大通过量量的性能;ii)诺马的性能收益比奥马的能量充足。