Vessel trajectory prediction is fundamental to intelligent maritime systems. Within this domain, short-term prediction of rapid behavioral changes in complex maritime environments has established multimodal trajectory prediction (MTP) as a promising research area. However, existing vessel MTP methods suffer from limited scenario applicability and insufficient explainability. To address these challenges, we propose a unified MTP framework incorporating explainable navigation intentions, which we classify into sustained and transient categories. Our method constructs sustained intention trees from historical trajectories and models dynamic transient intentions using a Conditional Variational Autoencoder (CVAE), while using a non-local attention mechanism to maintain global scenario consistency. Experiments on real Automatic Identification System (AIS) datasets demonstrates our method's broad applicability across diverse scenarios, achieving significant improvements in both ADE and FDE. Furthermore, our method improves explainability by explicitly revealing the navigational intentions underlying each predicted trajectory.
翻译:船舶轨迹预测是智能海事系统的基础。在该领域中,针对复杂海事环境中快速行为变化的短期预测已确立多模态轨迹预测(MTP)为具有前景的研究方向。然而,现有船舶MTP方法存在场景适用性有限与可解释性不足的问题。为应对这些挑战,我们提出一种融合可解释导航意图的统一MTP框架,将导航意图划分为持续性与瞬时性两类。本方法通过历史轨迹构建持续性意图树,采用条件变分自编码器(CVAE)建模动态瞬时意图,并利用非局部注意力机制保持全局场景一致性。基于真实自动识别系统(AIS)数据集的实验表明,本方法在多样化场景中具有广泛适用性,在平均位移误差(ADE)与最终位移误差(FDE)指标上均取得显著提升。此外,通过显式揭示每条预测轨迹背后的导航意图,本方法有效增强了系统的可解释性。