Estimation of differences in conditional independence graphs (CIGs) of two time series Gaussian graphical models (TSGGMs) is investigated where the two TSGGMs are known to have similar structure. The TSGGM structure is encoded in the inverse power spectral density (IPSD) of the time series. In several existing works, one is interested in estimating the difference in two precision matrices to characterize underlying changes in conditional dependencies of two sets of data consisting of independent and identically distributed (i.i.d.) observations. In this paper we consider estimation of the difference in two IPSDs to characterize the underlying changes in conditional dependencies of two sets of time-dependent data. Our approach accounts for data time dependencies unlike past work. We analyze a penalized D-trace loss function approach in the frequency domain for differential graph learning, using Wirtinger calculus. We consider both convex (group lasso) and non-convex (log-sum and SCAD group penalties) penalty/regularization functions. An alternating direction method of multipliers (ADMM) algorithm is presented to optimize the objective function. We establish sufficient conditions in a high-dimensional setting for consistency (convergence of the inverse power spectral density to true value in the Frobenius norm) and graph recovery. Both synthetic and real data examples are presented in support of the proposed approaches. In synthetic data examples, our log-sum-penalized differential time-series graph estimator significantly outperformed our lasso based differential time-series graph estimator which, in turn, significantly outperformed an existing lasso-penalized i.i.d. modeling approach, with $F_1$ score as the performance metric.
翻译:本文研究了两个时间序列高斯图模型(TSGGMs)的条件独立图(CIGs)差异的估计问题,已知这两个TSGGMs具有相似的结构。TSGGM的结构编码在时间序列的逆功率谱密度(IPSD)中。在现有的一些研究中,研究者关注通过估计两个精度矩阵的差异来刻画由独立同分布(i.i.d.)观测数据构成的两个数据集在条件依赖性上的潜在变化。本文中,我们考虑估计两个IPSD的差异,以表征两个时间依赖数据集在条件依赖性上的潜在变化。与以往工作不同,我们的方法考虑了数据的时间依赖性。我们分析了在频域中基于Wirtinger微积分、用于差分图学习的惩罚化D-迹损失函数方法,并考虑了凸惩罚(群组lasso)和非凸惩罚(log-sum与SCAD群组惩罚)两种正则化函数。提出了一种交替方向乘子法(ADMM)算法来优化目标函数。我们在高维设定下建立了逆功率谱密度在Frobenius范数下收敛于真实值的一致性条件及图恢复的充分条件。通过合成数据和真实数据示例验证了所提方法的有效性。在合成数据示例中,基于log-sum惩罚的差分时间序列图估计器显著优于基于lasso的差分时间序列图估计器,而后者又显著优于现有的基于lasso惩罚的i.i.d.建模方法,其中以F₁分数作为性能评价指标。