Intent-based networking (IBN) solutions to managing complex ICT systems have become one of the key enablers of intelligent and autonomous network management. As the number of machine learning (ML) techniques deployed in IBN increases, it becomes increasingly important to understand their expected performance. Whereas IBN concepts are generally specific to the use case envisioned, the underlying platforms are generally heterogenous, comprised of complex processing units, including CPU/GPU, CPU/FPGA and CPU/TPU combinations, which needs to be considered when running the ML techniques chosen. We focus on a case study of IBNs in the so-called ICT supply chain systems, where multiple ICT artifacts are integrated in one system based on heterogeneous hardware platforms. Here, we are interested in the problem of benchmarking the computational performance of ML technique defined by the intents. Our benchmarking method is based on collaborative filtering techniques, relying on ML-based methods like Singular Value Decomposition and Stochastic Gradient Descent, assuming initial lack of explicit knowledge about the expected number of operations, framework, or the device processing characteristics. We show that it is possible to engineer a practical IBN system with various ML techniques with an accurate estimated performance based on data from a few benchmarks only.


翻译:管理复杂信通技术系统的内在网络(IMN)解决方案已成为智能和自主网络管理的关键推动因素之一。随着IMB中安装的机器学习(ML)技术数量增多,了解其预期性能变得越来越重要。虽然IMB概念通常具体针对设想的使用案例,但基础平台一般是异质的,由复杂处理单位组成,包括CPU/GPU、CPU/FPGA和CPU/TPU组合,这些组合在运行所选择的ML技术时需要加以考虑。我们侧重于对所谓信通技术供应链系统中的IMB的案例研究,在这些系统中,多种信通技术工艺品被整合到一个基于不同硬件平台的系统中。这里,我们感兴趣的问题是将ML技术的计算性能设定为基准的问题。我们的基准方法以协作过滤技术为基础,依靠基于ML(ML)的方法,假定最初缺乏关于运行、框架或设备处理特性的预期数量的明确知识,我们只能根据一些实际性能基准来设计一种基于IML的精确性能技术的系统。我们证明,我们只能从几处设计一个基于IMU的精确性能基准。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
0+阅读 · 2022年1月17日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
3+阅读 · 2017年11月20日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员