Graph Laplacian (GL)-based semi-supervised learning is one of the most used approaches for classifying nodes in a graph. Understanding and certifying the adversarial robustness of machine learning (ML) algorithms has attracted large amounts of attention from different research communities due to its crucial importance in many security-critical applied domains. There is great interest in the theoretical certification of adversarial robustness for popular ML algorithms. In this paper, we provide the first adversarial robust certification for the GL classifier. More precisely we quantitatively bound the difference in the classification accuracy of the GL classifier before and after an adversarial attack. Numerically, we validate our theoretical certification results and show that leveraging existing adversarial defenses for the $k$-nearest neighbor classifier can remarkably improve the robustness of the GL classifier.


翻译:Laplacian(GL)图基于半监督的半监督学习是用图表对节点进行分类的最常用方法之一。 理解和验证机器学习算法的对抗性坚固性已经吸引了不同研究界的大量关注, 因为它在许多安全关键应用领域至关重要。 对于对流行的 ML 算法的对抗性强固性理论认证非常感兴趣。 在本文中, 我们为 GL 分类员提供了首个对抗性强的认证。 更准确地说, 我们在数量上限制了 GL 分类师在对抗性攻击前后的分类准确性差异。 从数字上看, 我们验证了我们的理论认证结果,并表明为最接近的邻居分类员利用现有的对抗性辩护可以显著改善GL 分类员的稳健性。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
102+阅读 · 2020年7月16日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2021年6月11日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
0+阅读 · 2021年1月15日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
相关论文
Arxiv
0+阅读 · 2021年6月11日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
0+阅读 · 2021年1月15日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
9+阅读 · 2018年3月28日
Top
微信扫码咨询专知VIP会员