Key point analysis is the task of extracting a set of concise and high-level statements from a given collection of arguments, representing the gist of these arguments. This paper presents our proposed approach to the Key Point Analysis shared task, collocated with the 8th Workshop on Argument Mining. The approach integrates two complementary components. One component employs contrastive learning via a siamese neural network for matching arguments to key points; the other is a graph-based extractive summarization model for generating key points. In both automatic and manual evaluation, our approach was ranked best among all submissions to the shared task.
翻译:关键分析是,从一组特定的论点中抽取一套简明和高层次的陈述,代表了这些论点的要点,本文件介绍了我们提出的与第八次论证采矿讲习班合用同一地点的要点分析共同任务的拟议办法,该办法包括两个互补部分。一个部分通过一个像形神经网络进行对比学习,将论点与关键点相匹配;另一个部分是基于图表的生成关键点的采掘汇总模型。在自动和人工评估中,我们的方法在共同任务的所有提交材料中名列前茅。