Robust and discriminative feature learning is critical for high-quality point cloud registration. However, existing deep learning-based methods typically rely on Euclidean neighborhood-based strategies for feature extraction, which struggle to effectively capture the implicit semantics and structural consistency in point clouds. To address these issues, we propose a multi-domain context integration network (MCI-Net) that improves feature representation and registration performance by aggregating contextual cues from diverse domains. Specifically, we propose a graph neighborhood aggregation module, which constructs a global graph to capture the overall structural relationships within point clouds. We then propose a progressive context interaction module to enhance feature discriminability by performing intra-domain feature decoupling and inter-domain context interaction. Finally, we design a dynamic inlier selection method that optimizes inlier weights using residual information from multiple iterations of pose estimation, thereby improving the accuracy and robustness of registration. Extensive experiments on indoor RGB-D and outdoor LiDAR datasets show that the proposed MCI-Net significantly outperforms existing state-of-the-art methods, achieving the highest registration recall of 96.4\% on 3DMatch. Source code is available at http://www.linshuyuan.com.
翻译:鲁棒且具有判别性的特征学习对于高质量的点云配准至关重要。然而,现有的基于深度学习的方法通常依赖于基于欧几里得邻域的策略进行特征提取,难以有效捕捉点云中隐含的语义和结构一致性。为解决这些问题,我们提出了一种多域上下文集成网络(MCI-Net),通过聚合来自不同领域的上下文线索来改进特征表示和配准性能。具体而言,我们提出了一个图邻域聚合模块,该模块构建全局图以捕获点云内部的整体结构关系。随后,我们提出了一种渐进式上下文交互模块,通过执行域内特征解耦和域间上下文交互来增强特征判别能力。最后,我们设计了一种动态内点选择方法,该方法利用多次位姿估计迭代的残差信息来优化内点权重,从而提高了配准的准确性和鲁棒性。在室内RGB-D和室外LiDAR数据集上进行的大量实验表明,所提出的MCI-Net显著优于现有的最先进方法,在3DMatch数据集上实现了96.4%的最高配准召回率。源代码可在 http://www.linshuyuan.com 获取。