Air pollution and carbon emissions caused by modern transportation are closely related to global climate change. With the help of next-generation information technology such as Internet of Things (IoT) and Artificial Intelligence (AI), accurate traffic flow prediction can effectively solve problems such as traffic congestion and mitigate environmental pollution and climate change. It further promotes the development of Intelligent Transportation Systems (ITS) and smart cities. However, the strong spatial and temporal correlation of traffic data makes the task of accurate traffic forecasting a significant challenge. Existing methods are usually based on graph neural networks using predefined spatial adjacency graphs of traffic networks to model spatial dependencies, ignoring the dynamic correlation of relationships between road nodes. In addition, they usually use independent Spatio-temporal components to capture Spatio-temporal dependencies and do not effectively model global Spatio-temporal dependencies. This paper proposes a new Spatio-temporal Causal Graph Attention Network (STCGAT) for traffic prediction to address the above challenges. In STCGAT, we use a node embedding approach that can adaptively generate spatial adjacency subgraphs at each time step without a priori geographic knowledge and fine-grained modeling of the topology of dynamically generated graphs for different time steps. Meanwhile, we propose an efficient causal temporal correlation component that contains node adaptive learning, graph convolution, and local and global causal temporal convolution modules to learn local and global Spatio-temporal dependencies jointly. Extensive experiments on four real, large traffic datasets show that our model consistently outperforms all baseline models.
翻译:现代交通造成的空气污染和碳排放与全球气候变化密切相关。在互联网(IoT)和人工智能(AI)等下一代信息技术的帮助下,准确的交通流量预测能够有效解决交通拥堵、减轻环境污染和气候变化等问题,进一步促进智能交通系统(ITS)和智能城市的发展。然而,交通数据在空间和时间上的高度相关性使得准确交通预报的任务成为一项重大挑战。现有的方法通常以图表神经网络为基础,使用预先定义的空间间距网络图来模拟空间依赖性,忽视道路节点之间关系的动态相关性。此外,它们通常使用独立的空间时空依赖性成分来捕捉空间时空依赖性和减轻环境污染和气候变化。本文建议建立一个新的空间时空气气分布图关注网络(STCGAT)来进行交通预测以应对上述挑战。在STCGAT中,我们使用了一种不偏重地嵌嵌定的路径方法,可以生成全球空间-时空依赖度-时空依赖性模型, 并展示了我们每个空间-时空关系模型的深度模型和直径直径对等模型, 显示我们每个空间-时间结构的模型和直径对等的深度学习,可以产生一个不同的空间-时间模型,从而显示我们之前的地理- 度- 度的深度对等模型生成的对等的对等的对等的对等模型和对等的对等的对等的对等的对等模型。