In recent years, dataframe libraries, such as pandas have exploded in popularity. Due to their flexibility, they are increasingly used in ad-hoc exploratory data analysis (EDA) workloads. These workloads are diverse, including custom functions which can span libraries or be written in pure Python. The majority of systems available to accelerate EDA workloads focus on bulk-parallel workloads, which contain vastly different computational patterns, typically within a single library. As a result, they can introduce excessive overheads for ad-hoc EDA workloads due to their expensive optimization techniques. Instead, we identify program rewriting as a lightweight technique which can offer substantial speedups while also avoiding slowdowns. We implemented our techniques in Dias, which rewrites notebook cells to be more efficient for ad-hoc EDA workloads. We develop techniques for efficient rewrites in Dias, including dynamic checking of preconditions under which rewrites are correct and just-in-time rewrites for notebook environments. We show that Dias can rewrite individual cells to be 57$\times$ faster compared to pandas and 1909$\times$ faster compared to optimized systems such as modin. Furthermore, Dias can accelerate whole notebooks by up to 3.6$\times$ compared to pandas and 26.4$\times$ compared to modin.


翻译:近年来,DataFrame 库,如Pandas变得越来越流行。由于其灵活性,它们越来越多地用于特定的探索性数据分析(EDA)工作负载。这些工作负载是多样的,包括可以跨库或纯Python编写的自定义函数。目前,加速EDA工作负载的大部分系统都专注于大规模并行工作负载,这些工作负载包含截然不同的计算模式,通常在单个库内完成。因此,由于其昂贵的优化技术,它们可能会引入过高的开销,特别是对于特定的EDA工作负载而言,这些工作负载需要执行一些简单的任务。相反,我们认为程序重写是一种轻量级的技术,可以在避免减速的同时,提供大幅的加速。我们在 Dias 中实现了这些技术,可以将笔记本电脑单元格重写为更适用于特定的EDA工作负载。在 Dias中,我们开发了一些有效的重写技术,包括动态预检规则条件,该条件为保证重写的正确性,并且针对于笔记本环境进行了即时重写。我们显示出, Dias 可以将单个单元格重写为比Pandas快57倍,比modin优化系统快1909倍。此外,Dias可以将整个notebook加速高达3.6倍,比Pandas快26.4倍。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
令人沮丧的C++性能调试
InfoQ
0+阅读 · 2022年10月24日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
37+阅读 · 2021年2月10日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
令人沮丧的C++性能调试
InfoQ
0+阅读 · 2022年10月24日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员