In recent times researchers have found several security vulnerabilities in the Routing Protocol for Low power and Lossy network (RPL), amongst which rank attack is a predominant one causing detrimental effects on the network by creating a fake topology. To address this concern, we propose a low-overhead rank attack detection scheme for non-storing mode of RPL used in IoT to deal with both increased and decreased rank attacks. Accordingly, we have modified the RPL Destination Oriented Directed Acyclic Graph (DODAG) formation algorithm to detect rank attacks during topology formation and maintenance. The distributed module of the algorithm runs in all the participating nodes whereas the centralized module runs in the sink. Unlike many existing schemes, instead of sending additional control message, we make the scheme low-overhead by simply modifying the DAO control message. Additionally, a lightweight Message Authentication Code (HMAC-LOCHA) is used to verify the integrity and authenticity of the control messages exchanged between nodes and the sink. The correctness of the proposed scheme is established through a concrete proof using multiple test case scenarios. Finally, the performance of the proposed scheme is evaluated both theoretically and through simulation in Contiki-based Cooja simulator. Theoretical evaluation proves the energy efficiency of the scheme. Simulation results show that our scheme outperforms over a state-of-the-art rank attack detection scheme in terms of detection accuracy, false positive or negative rate and energy consumption while also keeping acceptable network performance such as improved detection latency and at par packet delivery ratio.


翻译:近期,研究人员发现低功率和损失网络(RPL)运行协议中存在若干安全弱点,其中排名攻击是主要对网络造成有害影响的主要模式,通过制造虚假的地形图,解决这一关切,我们提议对IoT中使用的非储存模式的RPL低管级攻击探测计划,以应对级别攻击的增加和减少。因此,我们修改了RPL目标定向定向直接自行车图(DODG)的形成算法,以发现在地形形成和维护期间的级别攻击。算法的分布模块在所有参与节点中运行,而中央模块则在水槽中运行。与许多现有的计划不同,我们没有发出额外的控制信息,而是简单地修改DAO控制信息,使计划低头级攻击。此外,我们使用了轻量信息校验代码(HMAC-LOCHA),以核实节点与水槽之间交换的控制信息的完整性和真实性。拟议计划的正确性是用多个测试案例来确定。最后,拟议计划的准确性计算方式是在所有参与的节点,而中央模块则是在水槽中运行。与许多现有计划不同,而不是发出额外的控制信息,我们仅发送的控制信息,我们只是通过修改DADAVIA(S-S-S-S-I-S-S-S-I-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-MA-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S

0
下载
关闭预览

相关内容

最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
92+阅读 · 2020年10月22日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
已删除
将门创投
8+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月17日
Arxiv
0+阅读 · 2021年1月17日
VIP会员
相关资讯
已删除
将门创投
8+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员