Unmanned aerial vehicles (UAVs), commonly known as drones, are increasingly used across diverse domains, including logistics, agriculture, surveillance, and defense. While these systems provide numerous benefits, their misuse raises safety and security concerns, making effective detection mechanisms essential. Acoustic sensing offers a low-cost and non-intrusive alternative to vision or radar-based detection, as drone propellers generate distinctive sound patterns. This study introduces AUDRON (AUdio-based Drone Recognition Network), a hybrid deep learning framework for drone sound detection, employing a combination of Mel-Frequency Cepstral Coefficients (MFCC), Short-Time Fourier Transform (STFT) spectrograms processed with convolutional neural networks (CNNs), recurrent layers for temporal modeling, and autoencoder-based representations. Feature-level fusion integrates complementary information before classification. Experimental evaluation demonstrates that AUDRON effectively differentiates drone acoustic signatures from background noise, achieving high accuracy while maintaining generalizability across varying conditions. AUDRON achieves 98.51 percent and 97.11 percent accuracy in binary and multiclass classification. The results highlight the advantage of combining multiple feature representations with deep learning for reliable acoustic drone detection, suggesting the framework's potential for deployment in security and surveillance applications where visual or radar sensing may be limited.
翻译:无人驾驶飞行器(UAV),通常称为无人机,正日益广泛地应用于物流、农业、监视和国防等多个领域。尽管这些系统带来了诸多益处,但其滥用也引发了安全与安保方面的担忧,这使得有效的检测机制变得至关重要。声学传感提供了一种低成本、非侵入性的替代方案,相较于基于视觉或雷达的检测方法,因为无人机螺旋桨会产生独特的声学模式。本研究提出了AUDRON(基于音频的无人机识别网络),一种用于无人机声音检测的混合深度学习框架。该框架结合了梅尔频率倒谱系数(MFCC)、经卷积神经网络(CNN)处理的短时傅里叶变换(STFT)频谱图、用于时序建模的循环层以及基于自编码器的表征。特征级融合在分类前整合了互补信息。实验评估表明,AUDRON能有效区分无人机声学特征与背景噪声,在保持不同条件下泛化能力的同时实现了高准确率。AUDRON在二元分类和多类分类中分别达到了98.51%和97.11%的准确率。结果突显了将多种特征表征与深度学习相结合对于可靠声学无人机检测的优势,表明该框架在视觉或雷达传感可能受限的安全与监视应用中具有部署潜力。