We attempt to overcome the restriction of requiring a writing surface for handwriting recognition. In this study, we design a prototype of a stylus equipped with motion sensor, and utilizes gyroscopic and acceleration sensor reading to perform written letter classification using various deep learning techniques such as CNN and RNNs. We also explore various data augmentation techniques and their effects, reaching up to 86% accuracy.
翻译:我们试图克服要求笔迹识别需要写字面的限制。 在这项研究中,我们设计了一个装有运动传感器的管状原型,并利用陀螺和加速感应器阅读使用各种深层学习技术(如CNN和RNN)进行书面信件分类。 我们还探索了各种数据增强技术及其效果,达到86%的精确度。