Current network access infrastructures are characterized by heterogeneity, low latency, high throughput, and high computational capability, enabling massive concurrent connections and various services. Unfortunately, this design does not pay significant attention to mobile services in underserved areas. In this context, the use of aerial radio access networks (ARANs) is a promising strategy to complement existing terrestrial communication systems. Involving airborne components such as unmanned aerial vehicles, drones, and satellites, ARANs can quickly establish a flexible access infrastructure on demand. ARANs are expected to support the development of seamless mobile communication systems toward a comprehensive sixth-generation (6G) global access infrastructure. This paper provides an overview of recent studies regarding ARANs in the literature. First, we investigate related work to identify areas for further exploration in terms of recent knowledge advancements and analyses. Second, we define the scope and methodology of this study. Then, we describe ARAN architecture and its fundamental features for the development of 6G networks. In particular, we analyze the system model from several perspectives, including transmission propagation, energy consumption, communication latency, and network mobility. Furthermore, we introduce technologies that enable the success of ARAN implementations in terms of energy replenishment, operational management, and data delivery. Subsequently, we discuss application scenarios envisioned for these technologies. Finally, we highlight ongoing research efforts and trends toward 6G ARANs.


翻译:目前网络接入基础设施的特点是差异性、低纬度、高吞吐量和高计算能力,使大量同时连接和提供各种服务。不幸的是,这一设计没有高度重视服务不足地区的移动服务。在这方面,使用航空无线电接入网络(ARANs)是补充现有地面通信系统的有希望的战略,涉及无人驾驶飞行器、无人驾驶飞机和卫星等空中部件,ARAN可以迅速建立有需要的灵活接入基础设施。ARANs预计将支持发展无缝移动通信系统,以建立全面的第六代(6G)全球接入基础设施。本文概述了文献中最近关于ARANs的研究。首先,我们调查相关工作,从最近的知识进展和分析角度确定进一步探索的领域。第二,我们界定这项研究的范围和方法。然后,我们介绍ARAN的架构及其6G网络发展的基本特征。我们从几个角度分析系统模型,包括传播、能源消耗、通信网和网络流动。此外,我们介绍技术,以便最终能够成功进行ARAN的交付,并讨论AAN的交付过程。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
IEEE | 顶级期刊IoTJ物联网专刊诚邀稿件
Call4Papers
7+阅读 · 2019年5月20日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年4月16日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
IEEE | 顶级期刊IoTJ物联网专刊诚邀稿件
Call4Papers
7+阅读 · 2019年5月20日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员