This paper presents a method for hyperspectral image classification that uses support vector data description (SVDD) with the Gaussian kernel function. SVDD has been a popular machine learning technique for single-class classification, but selecting the proper Gaussian kernel bandwidth to achieve the best classification performance is always a challenging problem. This paper proposes a new automatic, unsupervised Gaussian kernel bandwidth selection approach which is used with a multiclass SVDD classification scheme. The performance of the multiclass SVDD classification scheme is evaluated on three frequently used hyperspectral data sets, and preliminary results show that the proposed method can achieve better performance than published results on these data sets.


翻译:本文介绍了一种使用高山内核功能的支持矢量数据说明的超光谱图像分类方法。 高山内核是用于单级分类的一种流行的机器学习技术,但选择适当的高山内核带宽以实现最佳分类性能总是一个具有挑战性的问题。 本文提出了一个新的自动的、不受监督的高山内核带宽选择方法,该方法用于多级SVDD分类方案。 多级SVDD分类方案的性能根据三种常用的超光谱数据集进行评估,初步结果表明,拟议方法的性能可以优于已公布的关于这些数据组的结果。

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
99+阅读 · 2020年3月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年6月1日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员