We extend two of the attacks on the PLWE problem presented in (Y. Elias, K. E. Lauter, E. Ozman, and K. E. Stange, Ring-LWE Cryptography for the Number Theorist, in Directions in Number Theory, E. E. Eischen, L. Long, R. Pries, and K. E. Stange, eds., vol. 3 of Association for Women in Mathematics Series, Cham, 2016, Springer International Publishing, pp. 271-290) to a ring $R_q=\mathbb{F}_q[x]/(f(x))$ where the irreducible monic polynomial $f(x)\in\mathbb{Z}[x]$ has an irreducible quadratic factor over $\mathbb{F}_q[x]$ of the form $x^2+ρ$ with $ρ$ of suitable multiplicative order in $\mathbb{F}_q$. Our attack exploits the fact that the trace of the root is zero, and has overwhelming success probability as a function of the number of samples taken as input. An implementation in Maple and some examples of our attack are also provided.
翻译:我们将(Y. Elias, K. E. Lauter, E. Ozman, and K. E. Stange, Ring-LWE Cryptography for the Number Theorist, in Directions in Number Theory, E. E. Eischen, L. Long, R. Pries, and K. E. Stange, eds., vol. 3 of Association for Women in Mathematics Series, Cham, 2016, Springer International Publishing, pp. 271-290)中提出的两种针对PLWE问题的攻击方法,推广至环$R_q=\mathbb{F}_q[x]/(f(x))$的情形,其中不可约首一多项式$f(x)\in\mathbb{Z}[x]$在$\mathbb{F}_q[x]$上具有形如$x^2+ρ$的不可约二次因子,且$ρ$在$\mathbb{F}_q$中具有合适的乘法阶。本攻击利用了该根的迹为零这一特性,其成功概率随输入样本数量的增加而呈压倒性优势。文中还提供了Maple实现代码及若干攻击示例。