We present new estimators for the statistical analysis of the dependence of the mean gap time length between consecutive recurrent events, on a set of explanatory random variables and in the presence of right censoring. The dependence is expressed through regression-like and overdispersion parameters, estimated via conditional estimating equations. The mean and variance of the length of each gap time, conditioned on the observed history of prior events and other covariates, are known functions of parameters and covariates. Under certain conditions on censoring, we construct normalized estimating functions that are asymptotically unbiased and contain only observed data. We discuss the existence, consistency and asymptotic normality of a sequence of estimators of the parameters, which are roots of these estimating equations. Simulations suggest that our estimators could be used successfully with a relatively small sample size in a study of short duration.
翻译:我们为统计分析连续重复事件、一系列解释性随机变量和在右审查的情况下,对连续重复事件之间平均时间长度间隔的依赖性、对一组解释性随机变量的依赖性进行新的估计,这种依赖性通过回归式参数和过度分散参数来表达,这些参数是通过有条件估计方程式估计的;每个间隔时间长度的平均值和差异性,以以往事件和其他共变情况所观察到的历史为条件,是已知参数和共变的功能;在审查的某些条件下,我们构建了标准化的估计功能,这些功能是尽可能不带偏见的,只包含观察到的数据;我们讨论了参数的测算序列的存在、一致性和无损常性,这些测算是这些估计方程式的根源。模拟表明,在短期研究中,我们的测算器可以用相对小的样本大小成功地使用。