As machine translation (MT) systems progress at a rapid pace, questions of their adequacy linger. In this study we focus on negation, a universal, core property of human language that significantly affects the semantics of an utterance. We investigate whether translating negation is an issue for modern MT systems using 17 translation directions as test bed. Through thorough analysis, we find that indeed the presence of negation can significantly impact downstream quality, in some cases resulting in quality reductions of more than 60%. We also provide a linguistically motivated analysis that directly explains the majority of our findings. We release our annotations and code to replicate our analysis here: https://github.com/mosharafhossain/negation-mt.
翻译:随着机器翻译系统的快速发展,其适当性问题依然存在。在本研究报告中,我们注重否定,这是人类语言的一种普遍的核心特性,严重影响了语义的语义。我们调查翻译否定是否是现代MT系统的问题,使用17个翻译方向作为测试床。我们通过透彻的分析发现,否定确实会对下游质量产生重大影响,在某些情况下还导致质量下降60%以上。我们还提供了一种语言动机分析,直接解释了我们的大部分调查结果。我们在这里发布说明和代码,以复制我们的分析:https://github.com/mosharafhosain/nest-mt。