We focus on non-stationary Maxwell equations defined on a regular patch of elements as considered in the isogeometric analysis (IGA). We apply the time-integration scheme following the ideas developed by the finite difference community [M. Hochbruck, T. Jahnke, R. Schnaubelt, Convergence of an ADI splitting for Maxwell's equations, Numerishe Mathematik, 2015] to derive a weak formulation resulting in discretization with Kronecker product matrices. We take the tensor product structure of the computational patch of elements from the IGA framework as an advantage, allowing for linear computational cost factorization in every time step. We design our solver to target simulations of electromagnetic waves propagations in non-regular biological tissues. We show that the linear cost of the alternating direction solver is preserved when we arbitrarily vary material data coefficients across the computational domain. We verify the solver using the manufactured solution and the problem of propagation of electromagnetic waves on the human head.
翻译:我们注重在等离子度分析(IGA)中考虑的常规元素补丁中定义的非静止的Maxwell方程式。我们采用根据有限差异群体[M. Hochbruck, T. Jahnke, R. Schnaubelt, R. Schnaubelt, 用于Maxwell方程式的ADI分解的Convergence, Nummerishe Mathematik, 2015] 所开发的非静止的 Maxwell方程式,以获得一个弱配方,导致与Kronecker产品基体分离。我们把IGA框架中元素的计算补丁的振动产品结构作为优势,允许在每个时间步骤中进行线性计算成本系数化。我们设计我们的解答器针对非常规生物组织电磁波传播的模拟。我们表明,当我们任意改变计算域的物质数据系数时,交替方向求解器的线性成本将保持不变。我们用制造的解决方案和电磁波在人类头上传播的问题来核查溶剂的溶剂。