Formal Concept Analysis (FCA) is extensively used in knowledge extraction, cognitive concept learning, and data mining. However, its computational demands on large-scale datasets often require outsourcing to external computing services, raising concerns about the leakage of sensitive information. To address this challenge, we propose a novel approach to enhance data security and privacy in FCA-based computations. Specifically, we introduce a Privacy-preserving Formal Context Analysis (PFCA) framework that combines binary data representation with homomorphic encryption techniques. This method enables secure and efficient concept construction without revealing private data. Experimental results and security analysis confirm the effectiveness of our approach in preserving privacy while maintaining computational performance. These findings have important implications for privacy-preserving data mining and secure knowledge discovery in large-scale FCA applications.
翻译:形式概念分析(FCA)广泛应用于知识提取、认知概念学习与数据挖掘领域。然而,其在大规模数据集上的计算需求常需外包至外部计算服务,引发了敏感信息泄露的担忧。为应对这一挑战,我们提出了一种增强FCA计算中数据安全与隐私的新方法。具体而言,我们引入了一种隐私保护的形式上下文分析(PFCA)框架,该框架将二进制数据表示与同态加密技术相结合。该方法能够在保护私有数据不泄露的前提下,实现安全高效的概念构造。实验结果与安全性分析证实了本方法在维持计算性能的同时有效保护隐私。这些发现对大规模FCA应用中的隐私保护数据挖掘与安全知识发现具有重要启示。