Utterance interpretation is one of the main functions of a dialogue manager, which is the key component of a dialogue system. We propose the action state update approach (ASU) for utterance interpretation, featuring a statistically trained binary classifier used to detect dialogue state update actions in the text of a user utterance. Our goal is to interpret referring expressions in user input without a domain-specific natural language understanding component. For training the model, we use active learning to automatically select simulated training examples. With both user-simulated and interactive human evaluations, we show that the ASU approach successfully interprets user utterances in a dialogue system, including those with referring expressions.
翻译:偏差解释是对话管理者的主要功能之一,对话管理者是对话系统的关键组成部分。我们建议采用行动状态更新方法(ASU)来进行语义解释,我们建议采用经统计培训的二进制分类器,用于检测用户语义文本中的对话状态更新行动。我们的目标是在用户输入中解释引用表达,而没有特定域的自然语言理解部分。为培训模型,我们利用积极学习来自动选择模拟培训实例。通过用户模拟和互动的人类评价,我们显示ASU方法成功地解释了对话系统中用户的语义,包括提及表达的语义。