The COVID-19 epidemic is the last of a long list of pandemics that have affected humankind in the last century. In this paper, we propose a novel mathematical epidemiological model named SUIHTER from the names of the seven compartments that it comprises: susceptible uninfected individuals (S), undetected (both asymptomatic and symptomatic) infected (U), isolated (I), hospitalized (H), threatened (T), extinct (E), and recovered (R). A suitable parameter calibration that is based on the combined use of least squares method and Markov Chain Monte Carlo (MCMC) method is proposed with the aim of reproducing the past history of the epidemic in Italy, surfaced in late February and still ongoing to date, and of validating SUIHTER in terms of its predicting capabilities. A distinctive feature of the new model is that it allows a one-to-one calibration strategy between the model compartments and the data that are daily made available from the Italian Civil Protection. The new model is then applied to the analysis of the Italian epidemic with emphasis on the second outbreak emerged in Fall 2020. In particular, we show that the epidemiological model SUIHTER can be suitably used in a predictive manner to perform scenario analysis at national level.


翻译:COVID-19流行病是上个世纪影响人类的一长串流行病的最后一个。在本文中,我们从由以下七个组成部分组成的七个组成部分的名称中提议了一个名为SUIHTER的新型数学流行病学模型:易受感染的未感染者(S),未发现(无症状和症状)感染者(U)、孤立(I)、住院(H)、威胁(T)、绝种(E)和回收(R)的(COVID-19)流行病)。根据最小方块法和Markov链链链蒙特卡洛(MCMC)方法的结合使用,提出了适当的参数校准。然后,提出了一种适当的参数校准,目的是要重新生成意大利流行病的过去历史,该流行病在2月下旬出现,至今仍在持续,并且从预测能力的角度验证SUIHTER。新模型的一个特征是,它允许在模型和意大利公民保护每天提供的数据之间采用一对一校准战略。然后,新的模型应用于意大利流行病的分析,重点是2020年秋季爆发的第二次爆发。我们特别地展示了国家流行病学模型的预测。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
121+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
已删除
将门创投
4+阅读 · 2019年9月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
0+阅读 · 2021年3月7日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
121+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
已删除
将门创投
4+阅读 · 2019年9月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员