Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond. In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks, where IoT devices contend for accessing the shared wireless channel using an adaptive p-persistent slotted Aloha protocol. To enable a capacity-optimal network, a novel formulation of random channel access with NOMA is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity. It is shown that the network optimization objective is high dimensional and mathematically intractable, yet it admits favourable mathematical properties that enable the design of efficient learning-based algorithmic solutions. To this end, two algorithms, i.e., a centralized model-based algorithm and a scalable distributed model-free algorithm, are proposed to optimally tune the transmission probabilities of IoT devices to attain the maximum capacity. The convergence of the proposed algorithms to the optimal solution is further established based on convex optimization and game-theoretic analysis. Extensive simulations demonstrate the merits of the novel formulation and the efficacy of the proposed algorithms.
翻译:非垂直多重存取(NOMA)是使5G网络内外的大规模机器类型通信(MMTC)得以实现的关键技术。在本文中,诺马用于提高高密度空间分布多细胞无线 IoT 网络随机存取效率,在这种网络中,IoT 设备争得使用适应性P-P-Pepistent stocked Aloha 协议访问共享无线频道。为了能够建立能力优化网络,提议了一种与诺马(NOMA)随机存取的新配方,其中对每个IoT设备的传输概率进行了调整,以最大限度地提高用户预期能力的几何平均值。这表明,网络优化目标具有高度的和数学的易读性,但它承认了有利的数学特性,使得能够设计高效的基于学习的算法解决方案。为此,提议了两种算法,即基于中央模型的算法和可缩放式的无型算法,以优化调控IoT设备的传输概率,以达到最大容量。提议的Mevelyal 优化算法的趋汇和模拟方法的精度分析,以最优化的精准性分析为基础,进一步调整IoT装置的计算法与最佳的精准。