Circuit design based on Quantum-dots Cellular Automata technology offers power-efficiency and nano-size circuits. It is an attractive alternative to CMOS technology. The XOR gate is a widely used building element in arithmetic circuits. An efficient XOR gate in QCA computational circuits can significantly improve efficiency. This paper proposes two different approaches for designing 3-input QCA XOR gates with 10 and 8 cells. They require two clock phases to create output. They have efficient and scalable structures. To demonstrate the functionality of these structures, we design QCA full adders using the suggested gates and compare the results with existing designs. The proposed QCA full adder has only 12 cells and is the best compared to all the existing counterparts. We simulated and verified the proposed structures. We proved the functionality of the proposed QCA full adder and the suggested QCA XOR structures. Additionally, QCAPro is used to estimate the energy dissipation of the proposed XOR and Full-adder. The results demonstrated that the proposed designs have the desired performance based on the number of cells, occupied area, and latency.
翻译:基于 量子- 点细胞自动自动马塔 技术的电路设计提供了电效和纳米尺寸的电路,这是CMOS 技术的一个有吸引力的替代物。 XOR 门是计算电路中广泛使用的建筑元素。QCA 计算电路中高效的 XOR 门可以大大提高效率。本文提出了设计配有 10 和 8 个单元格的 QCA XOR 门的两种不同方法。它们需要两个时钟阶段来生成输出。它们有高效和可缩放的结构。为了展示这些结构的功能,我们使用建议的门来设计QCA 完整添加器,并将结果与现有设计进行比较。 拟议的QCA 全面添加器只有12个单元格,并且与所有现有的对应器相比是最好的。 我们模拟并核实了拟议的结构。 我们证明了拟议的 QCA 全面添加器的功能和建议的 QCA XOR 结构。 此外, QCCA 用于估计拟议的 XOR 和 完全添加器的能量消耗情况。结果表明, 拟议的设计根据细胞、 占用区、 区域和层体的数量而具有理想的性性能性。</s>